
VM kernel tracing
with ftrace, trace-cmd

and Kernel Shark

Tzvetomir Stoyanov

VMware Open Source Technology Center

Agenda

➔ The problem

➔ The general idea

➔ The challenges

➔ The solution

+ scaling
+ redundancy
+ hardware utilization

The problem

- nightmare for developers
and administrators

According to the Linux
foundation Linux OS runs
90% of the public cloud
workload

The problem

The problem

In majority of use cases
Linux is used in both sides -
as host and guest OS

ftrace

● The official tracer of the Linux kernel

● Developed by Steven Rostded more
than 10 years ago

● Part of the kernel, compiled by default
in most popular Linux distros.

● Allows you to look inside every corner
of a live running kernel.

The general idea

The general idea

ftrace

Host

ftrace

Guest 1

trace-cmd agent

ftrace

Guest 2

trace-cmd agent

trace-cmd
trace.dat
trace-guest1.dat
trace-guest2.dat

KernelShark

➔ Fast transfer of huge tracing data between guest and host

➔ Time stamps synchronisation

➔ User friendly visualisation of huge host and guest trace data

Challenges

● Cons
○ Slow, very slow
○ Pass through the whole

kernel’s network stack
○ Communication can

happen between any host
or VM which is
undesirable

VM Data Transfer: TCP/IP sockets

● Pros
○ Hypervisor independant
○ Allows bi-directional

communication
○ Can be used for nested

virtualisation tracing

VM Data Transfer: FIFOs

● Cons
○ works only for KVM
○ 1to1 unidirectional

communication only
○ a FIFO for each direction is

needed
○ Cannot be used for nested

virtualization use case

● Pros
○ Fastest
○ Has no security concerns,

as the TCP / IP solution

VM Data Transfer: vSockets

● Cons
○ Slower than FIFOs

● Pros
○ Faster than TCP/IP
○ Allow for 1-to-N bidirectional

communication
○ Communication can happen

only between the host and VMs
○ Support nested virtualization
○ Wide hypervisor adoption

KVM Channels Throughput

Channel Throughput

FIFOs 1000 MB/s

vsockets 900 MB/s

TCP/IP sockets 275 MB/s

Synchronisation of time stamps

tracing events

Synchronisation of time stamps

Ftrace clock sources
➔ local
➔ global
➔ counter
➔ uptime
➔ x86-tsc
➔ ppc-tb
➔ mono
➔ mono_raw
➔ boot

Synchronisation of time stamps

system time

Host

NTP client

system time

Guest 1

NTP client

Guest 2

system time

NTP client

NTP ServerInternet

NTP approach

● tens of milliseconds accuracy

● clocks must be synchronized in
advanced, before running the
trace

Synchronisation of time stamps
PTP approach

Clock offset

 (T1' - T1 - T2' + T2) / 2

Synchronisation of time stamps
PTP in VM environment

kernel

Host

PTP client

Guest 1

chronyd

/dev/ptpX

ptp module

Guest 2

chronyd

/dev/ptpX

ptp module

/dev/ptpX

System clock

● sub-microsecond accuracy

● clocks must be synchronized
in advanced, before running
the trace

VM Tracing Overview

Trace data transfer

➔ FIFOs, in case of KVM hypervisor

➔ vsockets

➔ splice()

Timestamps synchronisation

 trace-cmd record --date …

● converts trace timestamps to system time

● all clocks must be synchronized in advanced

● accuracy depends on clock synchronization

using system time

Timestamps synchronisation
using PTP-like algorithm

GuestHost

...

Clock offset

 (T1' - T1 - T2' + T2) / 2

T1

T2’

T1’

T2

● round trip time is not symmetric
● no hardware timestamping

● Up to few hundred packets are
exchanged in one clock offset
measurement

● ftrace is used to get the packet
times

tracing events

Timestamps synchronisation
using PTP-like algorithm

Tracing Protocol Overview
Host

trace-cmd record -A Guest1 -e irq -A Guest2 -e all
Guest2

trace-cmd agent
Guest1

trace-cmd agent
TRACE_REQ “-e” “irq” TRACE_REQ “-e” “all”

TRACE_RESP TRACE_RESP

CLOSE
CLOSE

CLOSE_RESP
CLOSE_RESP

Tracing Data Tracing Data

Timestamps offset calc Timestamps offset calc

Timestamps offset calc Timestamps offset calc

trace.dat

meta data
➔ TraceID
➔ Guests trace ID array
➔ Host’s hypervisor task <->

guest’s VCPU mapping array

trace data
…...

trace files

trace-guest.dat

trace data
…...

meta data
➔ TraceID
➔ Host trace ID
➔ Timestamp offsets array

trace.dat

meta data
➔ TraceID
➔ Guests trace ID array
➔ Host’s hypervisor task <->

guest’s VCPU mapping array

trace data
…...

trace files

trace-guest.dat

trace data
…...

meta data
➔ TraceID
➔ Host trace ID
➔ Timestamp offsets array

KernelShark

Final words
● Ftrace, trace-cmd and KernelShark are

originally developed by Steven Rostedt
● VM tracing implementation was started by

Yoshihiro Yunomae
● Redesigned by VMware’s Open Source team

last year
● Newly released trace-cmd 2.9 has support of

VM tracing
● Next major release of KernelShark will inlude

support for VM tracing visualisation

Resources

ftrace (part of the Linux kernel)
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

trace-cmd
https://trace-cmd.org/

KernelShark
https://www.kernelshark.org

Bugzilla
https://bugzilla.kernel.org/buglist.cgi?component=Trace-cmd%2FKernelshark

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
https://trace-cmd.org/
https://slack-redir.net/link?url=https%3A%2F%2Fwww.kernelshark.org&v=3
https://bugzilla.kernel.org/buglist.cgi?component=Trace-cmd%2FKernelshark

Thank You !

tstoyanov@vmware.com

@VMWopensource
blogs.vmware.com/opensource

mailto:tstoyanov@vmware.com
http://blogs.vmware.com/opensource

