
War Story:
Using Mainline Linux
for an Android TV BSP

Neil Armstrong
Baylibre SAS

Timeline
● Android & Mainline
● HAL story
● GPU war story
● Boot Flows
● Other integration issues
● Conclusion

Scope of the project

● Build an “Upstream” AOSP BSP for new Amlogic SoC
● Targets (for now) the TV profile (for Android TV)
● Will use Android 4.19 as initial kernel base
● New SoCs from Amlogic, not yet supported in

mainline
● Team had AOSP port experience on very early

Android releases (~1.6)

Android & Mainline Linux

Android & Mainline

● Android has a long a complex history with mainline
Linux

● Recently, Google outlines multiple efforts
○ Project Treble: kernel ABI as “vendor interface” to have a

“Generic System Image”
○ “One kernel to boot them all” project to leverage common

kernel build

Android & Mainline

● AOSP 10 can run using pure vanilla kernel
● But we still use an Android derived branch with:

○ Android specific kernel config
○ Android specific kernel patches/fixes
○ Android kernel build YAML

Android & Mainline

● Our use case ?
○ No vendor, only mainline
○ New SoCs:

■ S905X2
■ S905X3

○ We need to push the support upstream and
backport

Android & Mainline

● The upstream process ?
○ As usual
○ But, we need to backport the upstream patches

to the Android tree
○ Using ChromeOS kernel rules for commit message

■ UPSTREAM
■ BACKPORT
■ FROMLIST

Android & Mainline

● But, why upstream-first ?
○ Easy maintenance
○ Fast rebase (git will drop backports)
○ Ensure code quality

● Cons ?
○ Slow
○ More work to be accepted upstream
○ Upstream won’t accept complex hacky features

Android & Mainline

Upstream won’t accept complex hacky features ?!

● Not an issue !
● WiP patches can be applied from List

○ So we can take more time to polish them
● Non-upstreamable patches are also possible

○ But we try to limit these
○ We tag them with “ANDROID:”

Hardware Abstraction Layers

HAL story

● Android based on Frameworks and HALs
● HALs translates the Frameworks high level system needs into system

calls
● Why ?

○ At the time, ARM mainline Linux was very limited
■ No dynamic graphic stack (only fbdev)
■ No sensor framework
■ Very limited Runtime Power Management
■ ...

HAL story

HAL story

● With the limited mainline Linux kernel
○ Vendor wrote their own HAL for display, GPU, …
○ Google wrote their own PM, syslog… drivers

● It tooks a very long time until AOSP could run on vanilla
○ It took time for Kernel dev to push alternatives
○ It took time for Google to use these alternatives
○ The DRM framework took time to mature
○ There is still a lot of work...

HAL story

● Our HAL usage ?
● The Yukawa project uses the default HALs for

○ drm-hwcomposer (was a huge blocker)
○ bluetooth
○ Wifi,

● Custom HALS :
○ Gralloc for the ARM Mali integration
○ HDMI-CEC, but could be generic
○ Lights

GPU Integration

GPU war story

GPU war story

● GPU library <-> gralloc <-> hwcomposer relationship
○ Google made their own OpenGL API
○ A private vendor “private_handle_t” structure is added
○ Is added by gralloc to be used by the HWComposer module
○ Can also be used by the OpenGL library
○ Contains properties of the allocated GPU buffer

GPU war story
● Mali ?

○ ARM provides a vendor Gralloc module
○ The Gralloc module version is tied to the OpenGL library version
○ E.g: Amlogic modified the private_handle_t structure
○ We are tied to use the Amlogic derived Gralloc module

● The drm-hwcomposer also needs a vendor implementation
○ Using the vendor gralloc private_handle_t define
○ Using the private_handle_t structure to import the buffer into DRM

GPU war story
● But

○ drm-hwcomposer is an external “generic” HAL
○ So -> upstream first !

GPU war story
● We still have an issue !
● Low-cost Android TV vendors (Amlogic, Allwinner, Rockchip, …) SoCs

usually cannot handle a full 4K UI layer
○ So they limit the Android UI in 1080p max
○ This is done in their Hardware Composer HAL module

● So, can we do the same with drm-hwcomposer ?
○ No
○ It needs a complete HWC API change to separate the

■ Display Mode
■ UI Layer dimensions

○ This are not distinguished as today
○ So we need to “lie” to Android and give a fake “1080p mode” for all 4K modes

Boot Flows

Boot Flows
● Old way (pre-Android 9)

○ Kernel as bootimg + initrd (DT added at the end of kernel zImage)
○ Mounts system, mounts vendor and boots
○ Can still be used for Android 9

● New Way v1 (system-as-root)
○ Kernel as bootimg (DT as “second” payload) + eventual DTBO
○ Mounts system using UUID, finds vendor in DT and mounts it
○ Optional for Android 9, Mandatory for Android 10 if not using “New Way v2”

● New Way v2 (dynamic partitions support)
○ Kernel as bootimg (DT as dtb payload) + initrd (required for dm-linear) + eventual DTBO
○ Mounts system & vendor from the “Super” partition and boots
○ Mandatory for Android 10 if not using “New Way v1”

Boot Flows
● Supporting all boot flows in a single codebase is very hard
● Simplest is to support the last one: Android 10 + System-as-root
● U-boot has regular patchset to support these feature

○ Pushed by Google, TI or other vendors
○ But those are very generic
○ Still needs a complex boot flow script !

Boot Flows

● The reference board are support in mainline U-Boot \o/
● But we still needs a few hacks on top to meet the complete

Android boot flow :-(

Other Integration Issues

Other issues
● Audio

○ It’s a mess, Google develops a complete HAL API
○ But no generic ALSA HAL, at all !
○ Solution ? re-use the old https://github.com/CirrusLogic/tinyhal

● WiFi
○ It’s a mess, don’t look at it, they still rely(ied ?) on their old

wpa-supplicant fork
○ Hopefully it’s moving forward ?

● Similar Display Modes
○ You can’t provide multiple display modes with same width X height X freq
○ No Interlaced support...

https://github.com/CirrusLogic/tinyhal

Conclusion

● https://android.googlesource.com/device/amlogic/yukawa/
● Android is much more Mainline Linux friendly
● Common modern Kernel APIs are being adopted
● Still a long road before having:

○ Single kernel for multiple boards
○ Mainline based kernel with very few patches

● Hopefully Panfrost will solve the GPU nightmare
● HWComposer needs some adaptations

