
DECEPTIVE SECURITY USING PYTHON

GAJENDRA DESHPANDE

KLS Gogte Institute of Technology, India

https://gcdeshpande.github.io

Contents

 Introduction to Deception

WebTrap

DemonHunter

Our Experiment

Conclusion

References

Introduction

Imagine you are passing through an unknown street at midnight and you find that
some anti-social elements are following you. To save yourself from them you start
running and look for a safe place to hide yourself. On the way, you will find a
good person and requests him to help you. He hides you in his place to protect
you. When these anti-social elements visit a good person’s place and enquire
about you, the good person misguides them and redirects them to some other
place in order to protect you. This is exactly how deception works. In this
analogy, YOU are the resources to be protected, anti-social elements are the
hackers who want to gain access to the resources, and a good person is a
deception technique that protects the resources from hackers by making them fall
in the trap.

Deception – Basic Idea

 Deception is a technique where hackers methods will be used as
security mechanism i.e., phishing the phishers.

 Deception is military tactic used by both attackers and defenders.

Source: https://www.helpnetsecurity.com/2018/12/06/introduction-deception-technology/

Deception – Types
There are two types of Deception Technology described below.

 Active Deception: Active Deception will provide inaccurate information intentionally to
the subjects (intruders or hackers) to fall for the trap.

 Passive Deception: Passive Deception will provide incomplete information, o the other
half of information. Intruders will try to gain all the information and the fall for the trap.

Source: https://www.geeksforgeeks.org/deception-technology/

They can also be classified as

 Client side deception – used by hackers

 Server side deception – used by security providers

Better Deception = Active Deception + Passive Deception

Deception – Evolution - Advantages

 HoneyPots (1998) HoneyNets(2000) HoneyToken (2003)
HoneyPot 2.0 (2012) Deception Technology (2016)

 Advantages

 Increased accuracy

 Minimal investment

 Future ready (applicable to new technology)

WebTrap

 Designed to create deceptive webpages to deceive and redirect attackers away from real
websites.

 The deceptive webpages are generated by cloning real websites, specifically their login pages.

The project is composed of two tools:

 Web Cloner - Responsible for cloning real websites and creating the deceptive web page

 Deceptive Web server - Responsible for serving the cloned webpages, and reporting to a syslog
server upon requests

Installation:

https://github.com/IllusiveNetworks-Labs/WebTrap

pip install requests
apt install gir1.2-webkit2-3.0 python-gi python-gi-cairo python3-gi python3-gi-cairo gir1.2-gtk-3.0

WebTrap – Web Cloner

WebTrap – Deceptive Web Server

DemonHunter
 To create low interaction Honeypot servers and their agents, plus a manager to check logs

 DemonHunter allows you to create your honeynet all customized by yourself, from ports to
protocol handlers.

https://github.com/skrtu/DemonHunter

Why we developed deception tool

 Cyber Space is a national asset

 XML is a heart of many mainstream technologies, Web Services, Service
Oriented Architecture(SOA), Cloud Computing etc.

 Web Services vulnerabilities can be present in Operating System, Network,
Database, Web Server, Application Server, Application code, XML parsers and
XML appliances

 New technologies – New Challenges (Old challenges + New Challenges)

Problem Definition and Proposed Solution

Problem Definition

 To secure web resources from XPath injection attack using modular recurrent
neural networks.

Proposed Solution

 The proposed solution uses modular recurrent neural network architecture to
identify and classify atypical behavior in user input. Once the atypical user
input is identified, the attacker is redirected to sham resources to protect the
critical data.

 Count based validation technique

Introduction to XPath Injection
 An attacker can craft special user-controllable input consisting of XPath expressions to inject the

XML database and bypass authentication or glean information that he normally would not be
able to.

<?xml version="1.0" encoding="ISO-8859-1"?>
<users>

<user>
<username>gandalf</username>
<password>!c3</password>
<account>admin</account>

</user>
</users>

string(//user[username/text()='gandalf' and password/text()='!c3']/account/text())

string(//user[username/text()='' or '1' = '1' and password/text()='' or '1' = '1']/account/text())

CAPEC on XPath Injection

Factor Description

Attack Prerequisites XPath Queries and unsanitized user controllable input

Typical Likelihood of Exploit High

Attacker Skills Low

Indicators Too many exceptions generated by the application as a result of

malformed XPath queries

Resource Required None

Attack Motivation Consequences Confidentiality- gain privileges and read application data

Injection Vector User-controllable input used as part of dynamic XPath queries

Payload XPath expressions intended to defeat checks run by XPath queries

Activation Zone XML Database

CIA Impact High, High, Medium

Architectural Paradigms Client-Server, Service Oriented Architecture (SOA)

Frameworks, Platforms, Languages All

Research Gap Identified

Neural network approach to identify and classify atypical behavior in input

The study showed different approaches to handle XPath injection attacks. It also showed

methods applied and their disadvantages. We can conclude from the study that neural

networks are not applied to detect Xpath injection attacks and existing results are not

promising.

The study showed, how modularity in case of neural networks helps to achieve improved

performance. Modular neural networks have not been applied to cyber security particularly

to the detection of SQL/XPath injection attacks.

System Design

Fig. 1: Three tier architecture of the proposed system

Some valid inputs:
Email-id
Mobile number
Alphanumeric word

Some malicious inputs:
‘1 or 1=1
user’ or ‘a’=‘a
%00

Some invalid inputs:
Very large input string
String with special characters
String formed from different character set

Algorithm

Algorithm

System Environment

Note: Same environment is used for Development and Testing of the System. The system may also be
deployed on machines with lower configurations and on different platforms.

Software Environment

Technology Server Side Client Side

Neural Networks PyBRAIN [14] -

Web Services BottlePy Micro Web Framework [15] -

Web Server WSGIRefServer of BottlePy and Apache -

Web Browser Firefox, Konquerer Firefox, Konquerer

Scripting Language, Graphs Python, numpy, matplotlib [16] -

Operating Systems Fedora Linux 14 Fedora Linux 14

Hardware Environment

System Intel i3 processor, 3GB RAM Intel i3 processor, 3GB RAM

Table 5: Tools and technologies used for experimentation

PyBRAIN Machine Learning Library

 PyBrain is a modular Machine Learning Library for Python.

 PyBrain is short for Python-Based Reinforcement Learning, Artificial Intelligence
and Neural Network Library

 To download and Install PyBrain

$ git clone git://github.com/pybrain/pybrain.git

$ python setup.py install

For more detailed installation instructions visit

http://wiki.github.com/pybrain/pybrain/installation

For Information on PyBrain visit http://www.pybrain.org

Bottle- Python Web Framework
 Bottle is a fast, simple and lightweight WSGI micro web-framework for Python.

 It is distributed as a single file module and has no dependencies other than
the Python Standard Library.

 It includes built in Routing, Templates, Utilities and Server

 Bottle does not depend on any external libraries. You can just
download bottle.py into your project directory and start coding:

$ wget https://bottlepy.org/bottle.py

 For more information on Bottle Framework visit http://www.bottle.org

Results (True Positives)

Number of

epochs

Modular Neural

Network

Single Neural

Network

50 0 19

100 90 82

150 96 80

200 99 55

250 94 39

300 96 27

350 93 30

400 90 40

450 90 43

500 94 50

Table 6: Comparison of true positives

Fig. 2: Comparison of true positives

Results (False Positives)

Number of

epochs

Modular Neural

Network

Single Neural

Network

50 99 72

100 07 20

150 05 34

200 06 38

250 05 57

300 04 63

350 08 76

400 08 58

450 10 58

500 10 45

Table 7: Comparison of false positives

Fig. 3: Comparison of false positives

Results (True Negatives)

Number of

epochs

Modular Neural

Network

Single Neural

Network

50 1 28

100 93 80

150 95 66

200 94 62

250 95 43

300 96 37

350 92 24

400 92 42

450 90 42

500 90 55

Table 8: Comparison of true negatives

Fig. 4: Comparison of true negatives

Results (False Negatives)

Number of

epochs

Modular Neural

Network

Single Neural

Network

50 100 81

100 10 18

150 04 20

200 01 45

250 06 61

300 04 73

350 07 70

400 10 60

450 10 57

500 06 50

Table 9: Comparison of false negatives

Fig. 5: Comparison of false negatives

Results (Response Time)

Number of

samples

Modular Neural

Network

Single Neural

Network

10 10.23 15.31

20 20.27 30.20

30 30.98 45.74

40 40.74 61.32

50 51.31 75.61

60 62.05 90.78

70 70.54 106.34

80 81.47 120.45

90 92.27 136.17

100 101.75 150.87

Table 10: Comparison of response time

Fig. 6: Comparison of response time

Summary of Results

Average detection rate

including an outlier

Average detection rate

excluding an outlier

MNN % SNN % MNN % SNN %

True Positives 84.2 46.5 93.55 51.66

False Negatives 15.8 53.5 6.45 48.33

True Negatives 83.8 47.9 93.11 53.22

False Positives 16.2 52.1 6.88 46.77

Table 11: Average detection rate including and excluding an outlier

Snapshots

Snapshots (initial output)

Snapshots (valid input scenario)

Snapshots (malicious input scenario)

Snapshots (fake login scenario)

Conclusion

 Our solution offers improved security over existing methods by misleading the
attackers to false resources and custom error pages

 Our results also show that the system accepts legitimate input although the user
input may contain some special characters and rejects only truly malicious inputs.

 Our solution combines modular neural networks and count based validation
approach to filter the malicious input

 Our solution has resulted in increased average detection rate of true positives
and true negatives and decreased average detection rate of false positives
and false negatives

 The security systems have to be successful every time. But attacker has to be
successful only once.

References
[1] Thiago Mattos Rosa, Altair Olivo Santin, Andreia Malucelli, “Mitigating XML Injection Attack through

Strategy based Detection System”, IEEE Security and Privacy, 2011

[2] Nuno Antunes, Nuno Laranjeiro, Marco Vieira, Henrique Madeira, “Effective Detection of SQL/XPath
Injection Vulnerabilities in Web Services”, IEEE International Conference on Services Computing, 2009

[3]Nuno Laranjeiro, Marco Vieira, Henrique Madeira, “A Learning Based Approach to Secure Web Services from
SQL/XPath InjectionAttacks”, Pacific Rim International Symposium on Dependable Computing, 2010

[4] V. Shanmughaneethi, R. Ravichandran, S. Swamynathan, “PXpathV: Preventing XPath Injection Vulnerabilities in
Web Applications”, International Journal on Web Service Computing, Vol.2, No.3, September 2011

[5] CAPEC-83: XPath Injection, http://capec.mitre.org/data/definitions/83.html

[6] Mike W. Shields, Matthew C. Casey, “A theoretical framework for multiple neural network systems”, 2008

[7] Hanh H. NguyenÆ Christine W. Chan, “Multiple neural networks for a long term time series forecast”, Springer,
Neural Comput & Applic (2004) 13: 90–98

[8] Anand, R., Mehrotra, K., Mohan C.K., Ranka S., "Efficient classification for multiclass problems using modular
neural networks", IEEE Transactions on Neural Networks, Volume 6, Issue 1, 1995

References
[9] S. Hochreiter and J. Schmidhuber. “Long short-term memory. Neural Computation”, 9 (8): 1735–1780, 1997.

[10] Derek D. Monner, James A. Reggia, “A generalized LSTM-like training algorithm for second-order recurrent
neural networks”

[11] Anders Jacobsson, Christian Gustavsson, “Prediction of the Number of Residue Contacts in Proteins Using
LSTM Neural Networks”, Technical report, IDE0301, January 2003

[12] P.A. Mastorocostas, “Resilient back propagation learning algorithm for recurrent fuzzy neural networks”,
ELECTRONICS LETTERS, Vol. 40 No. 1, 2004

[13] Martin Riedmiller, Rprop – Description and Implementation Details, Technical report, 1994

[14] Tom Schaul, Justin Bayer, Daan Wierstra, Sun Yi, Martin Felder, Frank Sehnke, Thomas Rückstieß, Jürgen
Schmidhuber. “PyBrain”, Journal of Machine Learning Research, 2010

[15] Bottle: Python Web Framework, http://bottlepy.org/docs/dev/

[16] matplotlib, http://matplotlib.org/contents.html

[17] https://github.com/IllusiveNetworks-Labs/WebTrap

[18] https://github.com/skrtu/DemonHunter

Thank You

