

Comparison of eBPF, XDP and DPDK for packet inspection

Who am I?

- * Who am I?
- Chief System Architect of SiteGround.com
- Sysadmin since 1996
- Organizer of OpenFest, BG Perl Workshops, LUG-BG, RailsGirls and others
- Teaching Network Security and Linux System Administration courses in Sofia University and SoftUni

Why do we need this?

Frequency of DoS/DDoS attacks to our infrastructure

- > 4-10 Gbps 6-8 times a month
- > 10-40 Gbps maybe 2-3 times a month
- > 100+ Gbps around 2 times a month

More stats

Attacks resulting in service degradation:

- > for the past 276 days we had 31 DDoS attacks
- > some of the months, no attacks
- but some months, up to 9
- > 2019 31 attacks
- > 2018 75 attacks
- > 2017 69 attacks
- > 2016 84 attacks

Note: I have manually counted the e-mails. The numbers can be slightly inaccurate.

Most attacks are basic

- 20k pps toward ISC Bind can consume up to 30 CPU cores
- > a child can generate that on its laptop, at home

General solutions

- Buy additional bandwidth
- Buy a very expensive scrubbing device

OR

Offload this task to other companies, like CloudFlare

Hosted solution issues

- Not every DataCenter is wiling to invest in these devices
- Shared devices
- Attacks can be larger then the capacity of the device
- Larger attacks almost always result in null route
- Attacks saturating the uplinks can affect other machines in the rack and/or row

Cloud solution issues

- You have to point your DNS to the service provider
- Controlling your DNS is now only API based
- > Large DNS updates become an issue
- Not suitable for hosting companies

Requirements?

- Build a VM that can handle 10Gbps with
 - ~8Mpps
 - > Why a VM?
- > scrub UDP DNS and NTP traffic
- > scrub TCP traffic by implementing SYN cookies
- > scrub all unrelated traffic
- cache HTTP responses(wishful thinking):)

Linux Network Flow

Linux Network Flow

Linux Network Flow

10M packet drop

- in 2018 CloudFlare published the article:

 How to drop 10m packets
- > I confirm their results with a few additions:
 - > iptables can drop at best 2m pps
 Note: with only one entry in the PREROUTING chain of the mangle table
 - heaving multiple entries in that chain easily becomes a problem
 - even if you use ipset with that, you have a big problem when updating that information

CloudFlare results

Packet dropping performance

CloudFlare results XDP

10M packet drop

CloudFlare demo code can be found on GitHub

So, how I started?

- > I already knew about XDP
- But I decided to be "smart ass" and wrote an iptables module...
- > It could handle between 260k and 280k pps

Not good enough... eBPF

- > I also knew I can use eBPF for that...
 - FOSDEM 2016
- It was better, but not enough...
 - > 320-350k pps drop rate
 - > with 2000 domains and UDP packet checking
 - > no checksums thou

DPDK

- > I had previous experience with DPDK
- So I ordered one Intel and one SolarFlare NICs
- With both I managed to drop anything that was below the 10G limit of the cards
- With SolarFlare I even tested uploading code into the NIC it self

Data
Plane
Development
Kit

Complex DPDK

- Nobody, except me, was interested in supporting DPDK code
- Writing and updating DPDK is not trivial
- DPDK required specific HW that may not be available in the DataCenter

Data
Plane
Development
Kit

DPDK and P4

- > A friend(Boyan Krosnov) told me about P4
- > P4 made updating the logic and content of the filter program a lot simpler for me...

Data
Plane
Development
Kit

P4 and people

- > P what?
- If we were to use DPDK with P4, everyone had to learn the language :(

And then came XDP

- Extremely fast and closest to the NIC, same as DPDK
- Supported by many drivers
- Extendable with eBPF functions
- Developed by Jasper Brouer

Path What I ended up, with?

- ➤ A filter similar to what CF did with their DROP example
- instead of a comparing a single prefix, I'm extracting the UDP data if the packet is UDP
- then the extracted data is compared with a BPF map
- ➤ I wrote a simple user space tool, that updates the map in the kernel
- > voila I had a fast scrubber

the UDP scrubber

- if the DNS request is not for a domain that is within the list in the map I drop the packet
- ToDo: add caching of responses with TTL

the TCP scrubber

This is where I had to stop:(

- compare the packet's dst port and allow it only if it is:
 - SYN to a port that is allowed
 - > send and receive SYN cookies here
 - part of already existing connection by examining its own db of tuples and the supplied by the user space(other VMs)

the TCP scrubber

This is where I had to stop :(

It should handle the SYN cookie for the servers behind and replay the initial SYN if correct SYN, ACK is received

Testing the bastard

I knew I was able to drop packets fast...

But I needed a proof;)

- ➤ I had a talk with Jasper at Linux Plumbers 2019
- ➤ He pointed me to his patched version of pktgen on GitHub :)

Now...

How to get from 10Gbps to 200Gbps?

Now...

How to get from 10Gbps to 200Gbps?

- Combining multiple VMs with ECMP
 - > I did that directly on the switch :)

Links

How to drop 10 million packets per second https://blog.cloudflare.com/how-to-drop-10-million-packets/https://github.com/cloudflare/cloudflare-blog/tree/master/2018-07-dropping-packets

XDP tutorial https://github.com/xdp-project/xdp-tutorial More XDP materials: https://www.iovisor.org/technology/xdp

Enhanced pktgen by Jasper https://github.com/netoptimizer/network-testing

Links

Linux tc and eBPF

https://archive.fosdem.org/2016/schedule/event/ebpf/attachments/slides/1159/export/events/attachments/ebpf/slides/1159/ebpf.pdf man pages

http://man7.org/linux/man-pages/man8/tc-bpf.8.html

http://man7.org/linux/man-pages/man2/bpf.2.html

SolarFlare AOR firmware development kit

https://www.colfaxdirect.com/store/pc/viewPrd.asp?idproduct=1585

Data Plane Development Kit

https://www.dpdk.org/

P4 Language Specification

https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.pdf

P4 meets DPDK

https://www.dpdk.org/wp-content/uploads/sites/35/2017/09/DP

DK-Userspace2017-Day2-12-SANDOR_LAKI-T4P4S.pdf

Thank you!

