
Between the Millstones:
Lessons of Self-Funded Participation in

Kernel Self Protection Project

Alexander Popov

Positive Technologies

November 3, 2018



About Me

Alexander Popov

Linux kernel developer

Security researcher at

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 2 / 46



Motivation of This Talk

Motivation

Today I see that the ideas from this talk could have been very useful

for me 1.5 years ago, when I was beginning my participation in KSPP.

That's why I would like to share them.

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 3 / 46



Goals of This Talk

1 Involve more enthusiasts in Linux kernel security

2 Share the lessons I learned during kernel security development

3 Communicate on how we can improve our approaches

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 4 / 46



Who is Involved in Linux Kernel Security?

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 5 / 46



About LSM

Linux Security Modules (LSM) is a framework that allows the Linux

kernel to support a variety of computer security models

LSM is primarily focused on supporting access control modules

Projects: APPARMOR, SELINUX, SMACK, TOMOYO, YAMA...

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 6 / 46



Who is Involved in Linux Kernel Security?

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 7 / 46



About syzkaller

syzkaller is an unsupervised coverage-guided kernel fuzzer

It gives great power in combination with sanitizers

syzbot system uses syzkaller for continuous Linux kernel fuzzing

It's an awesome project!

Read the �Tale of thousand kernel bugs� by Dmitry Vyukov

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 8 / 46

https://events.linuxfoundation.org/wp-content/uploads/2017/11/Syzbot-and-the-Tale-of-Thousand-Kernel-Bugs-Dmitry-Vyukov-Google.pdf


Who is Involved in Linux Kernel Security?

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 9 / 46



About grsecurity

A patch for Linux kernel which provides security enhancements

Includes PaX technologies

Introduced a lot of excellent ideas to OS security world

https://grsecurity.net/features.php

But now is closed to the community (commercial secret)

Last public version is for kernel 4.9 (April 2017)

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 10 / 46

https://grsecurity.net/features.php


Who is Involved in Linux Kernel Security?

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 11 / 46



About Kernel Self Protection Project

Security is more than �xing bugs

Linux kernel should handle errors/attacks safely

grsecurity & PaX ideas are the source of inspiration

KSPP goal

Eliminate vulnerability classes and exploitation methods

in the Linux kernel mainline

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 12 / 46



Who is Involved in Linux Kernel Security?

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 13 / 46



Between the Millstones: That's How Mainline Hardening Is Made

https://foodal.com/kitchen/general-kitchenware/grain-mills/best-mills-reviewed/

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 14 / 46



KSPP Way: Between Scylla and Charybdis

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 15 / 46



Linux Kernel Self Protection

Linux kernel self protection is a very complex area, there are:

Vulnerability classes

Exploitation techniques

Bug detection mechanisms

Defence technologies
I Mainline
I Out-of-tree
I Commercial
I Provided by hardware

Drawn by Daniel Reeve, made by weta

And they all have complex relations...
It would be nice to have a graphical representation for easier navigating!

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 16 / 46



Linux Kernel Defence Map

So I created a Linux Kernel Defence Map

https://github.com/a13xp0p0v/linux-kernel-defence-map

Key concepts:

Each connection between nodes represents a relationship

N.B. This map doesn't cover cutting attack surface

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 17 / 46

https://github.com/a13xp0p0v/linux-kernel-defence-map


Linux Kernel Defence Map: Whole Picture
https://github.com/a13xp0p0v/linux-kernel-defence-map

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 18 / 46

https://github.com/a13xp0p0v/linux-kernel-defence-map


Linux Kernel Defence Map: STACKLEAK Part
https://github.com/a13xp0p0v/linux-kernel-defence-map

.

.

.

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 19 / 46

https://github.com/a13xp0p0v/linux-kernel-defence-map


Linux Kernel Defence Map: More Info
https://github.com/a13xp0p0v/linux-kernel-defence-map

.

Got interested? Read the sources and start experimenting!

grsecurity features

Linux kernel security documentation

Kernel Self Protection Project recommended settings

Linux kernel mitigation checklist by Shawn C

Check the hardening options in your kernel .config with

https://github.com/a13xp0p0v/kcon�g-hardened-check

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 20 / 46

https://github.com/a13xp0p0v/linux-kernel-defence-map
https://grsecurity.net/features.php
https://www.kernel.org/doc/html/latest/security/self-protection.html
http://www.kernsec.org/wiki/index.php/Kernel_Self_Protection_Project/Recommended_Settings
https://github.com/hardenedlinux/grsecurity-101-tutorials/blob/master/kernel_mitigation.md
https://github.com/a13xp0p0v/kconfig-hardened-check


My lessons from participation in KSPP

Story 1

Blocking consecutive double kfree()

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 21 / 46



CVE-2017-2636

Once upon a time my customized syzkaller setup got a suspicious kernel oops

I created a stable repro and found a race condition in drivers/tty/n_hdlc.c

It caused a double-free bug, which I managed to exploit for LPE

Debian, Ubuntu, Fedora, RHEL were a�ected (CONFIG_N_HDLC=m)

Responsible disclosure:
http://seclists.org/oss-sec/2017/q1/569

Detailed write-up about CVE-2017-2636 exploitation:
https://a13xp0p0v.github.io/2017/03/24/CVE-2017-2636.html

http://�ndwallpaper.info/street+racing+cars/page/7/

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 22 / 46

http://seclists.org/oss-sec/2017/q1/569
https://a13xp0p0v.github.io/2017/03/24/CVE-2017-2636.html


Surprise During PoC Development

SLUB allocator accepts consecutive kfree() of the same address

Kernel heap spraying after double-free gave me two sk_buff's

pointing to the same memory

So double-free turns into use-after-free

slub_debug detects this, but nobody uses it in production

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 23 / 46



Double-Free -> Use-After-Free on sk_bu�

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 24 / 46



Blocking Consecutive Double-Free in SLUB (1)

I proposed a patch with a BUG_ON() similar to fasttop check in GNU

C library allocator. It provoked a lively discussion at LKML:

Cons
introduces some performance penalty for
the default SLUB functionality

duplicates some part of already existing
slub_debug feature

causes a kernel oops in case of a
double-free error

Pros
slub_debug is not enabled in Linux
distributions by default (noticeable
performance impact)

when the allocator detects a
double-free, some severe kernel error has
already occurred on behalf of some
process. It's not worth trusting that
process (which might be an exploit).

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 25 / 46

https://lore.kernel.org/lkml/1500309907-9357-1-git-send-email-alex.popov@linux.com/T/#u 


Blocking Consecutive Double-Free in SLUB (2)

But �nally this check got into the mainline kernel under

CONFIG_SLAB_FREELIST_HARDENED

Kudos to Kees Cook for his diplomacy

And today Ubuntu and Fedora kernels have this option

enabled by default!

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 26 / 46



Lessons From This Story

Exploit practice can give interesting ideas for hardening

Performance has the top priority for the Linux kernel maintainers

But security can come under con�g options, distros enable them

BUG_ON() provokes controversy [see the next slide]

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 27 / 46



About BUG_ON()

Do your best to handle the error without BUG_ON()

Think about using WARN()

If you can't avoid BUG_ON(), double-check that you don't hold any core

spinlocks, do see the oops and don't kill the whole machine. No, triple-check!

Read these emails from Linus (several times):

I �Just report it. Do no harm.�
https://lkml.org/lkml/2017/11/21/356

I About BUG_ON() and locks
http://lkml.iu.edu/hypermail/linux/kernel/1610.0/01217.html

I BUG_ON() is forbidden for hardening (???)
https://lkml.org/lkml/2018/8/15/450

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 28 / 46

https://lkml.org/lkml/2017/11/21/356
http://lkml.iu.edu/hypermail/linux/kernel/1610.0/01217.html
https://lkml.org/lkml/2018/8/15/450


My lessons from participation in KSPP

Story 2

Bringing PAX_MEMORY_STACKLEAK into

the Linux kernel mainline

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 29 / 46



STACKLEAK Overview

Awesome Linux kernel security feature

Developed by PaX Team

PAX_MEMORY_STACKLEAK in grsecurity/PaX patch (which is a

commercial secret now)

I extracted STACKLEAK from the last public version of

grsecurity/PaX patch and worked on upstreaming it

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 30 / 46



STACKLEAK Upstreaming

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 31 / 46



STACKLEAK Security Features

1 Erases the kernel stack at the end of syscalls

I Reduces the information that can be revealed through some kernel stack
leak bugs � complies with FDP_RIP.2 (Full Residual Information
Protection) of the Common Criteria standard

I Blocks some uninitialized kernel stack variable attacks (for example
CVE-2010-2963, CVE-2017-17712)

2 Improves runtime detection of kernel stack depth over�ow (blocks Stack Clash
attack)

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 32 / 46



Uninitialized Stack Variable Attack

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 33 / 46



Mitigation of Uninitialized Stack Variable Attacks

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 34 / 46



Stack Clash Attack for the Kernel Stack

Idea by Gael Delalleau: "Large memory management vulnerabilities" (2005)
Revisited in "The Stack Clash" by Qualys Research Team (2017)

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 35 / 46

https://cansecwest.com/core05/memory_vulns_delalleau.pdf
https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt


STACKLEAK Upstreaming

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 36 / 46



STACKLEAK: Technical Details

Linus merged it into kernel v4.20/5.0 with this funny message:

I'm still not a huge fan, but I didn't hate it enough not to pull it. So pulled,
Linus

Slides from the talk at LSS NA 2018:
https://schd.ws/hosted_�les/lssna18/b7/stackleak_LSS_NA_2018.pdf

Article at LWN: https://lwn.net/Articles/764325/

Dispute with Brad Spengler: https://lwn.net/Articles/764685/

N.B. if you need STACKLEAK with alloca() checking, use v14:

https://www.openwall.com/lists/kernel-hardening/2018/07/26/3

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 37 / 46

https://schd.ws/hosted_files/lssna18/b7/stackleak_LSS_NA_2018.pdf 
https://lwn.net/Articles/764325/
https://lwn.net/Articles/764685/
https://www.openwall.com/lists/kernel-hardening/2018/07/26/3


STACKLEAK Lessons: What Worked Well

1 Cover letter describing the goal, bene�ts, performance impact

2 Release early, release often (RERO)

I RFC tag for early versions of the patch series
I TODO list and changelog in the cover letter

3 Careful handling of the feedback from the community and Brad

4 Cool-headed separating technical arguments from personal
attacks

5 Flexibility and persistence

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 38 / 46



KSPP Motto

From Terminator 2: Judgment Day

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 39 / 46



STACKLEAK Lessons: What Didn't Work

1 Illusions that my work will be appreciated

2 Not expanding the list of recipients as development progresses

3 It looks like KSPP roadmap is not coordinated with Linus

I The risk of getting NAK after a year of hard work
I The lack of clear rules for hardening patches, e.g. about:

F Assembly language usage
F Runtime disabling of the feature
F BUG_ON() usage

4 Not knowing Monty Python comedy ;)
https://lkml.org/lkml/2018/8/15/510

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 40 / 46

https://lkml.org/lkml/2018/8/15/510


How Can We Do Better?

Working harder, of course!

[?] Having a list of kernel hardening �behavior patterns�

approved by maintainers

[?] Having the KSPP roadmap coordinated with maintainers

[?] Large companies/organizations explicitly

requesting/promoting concrete kernel hardening features

More enthusiastic people participating, for sure!

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 41 / 46



Closing Thoughts

Linux kernel development is very interesting

Linux kernel hacking and hardening is TWICE as interesting and

sometimes dangerous :)

But HERE you can �nd BIG challenges and get joy in the battle!

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 42 / 46



Thanks! Questions?

alex.popov@linux.com
@a13xp0p0v

http://blog.ptsecurity.com/
@ptsecurity

mailto:alex.popov@linux.com
https://twitter.com/a13xp0p0v
http://blog.ptsecurity.com/
https://twitter.com/ptsecurity


STACKLEAK Performance Impact (1)

Brief performance testing on x86_64
Hardware: Intel Core i7-4770, 16 GB RAM
Test 1, attractive: building the Linux kernel with x86_64 defcon�g

$ time make

Result on 4.18:

real 12m14.124s

user 11m17.565s

sys 1m6.943s

Result on 4.18+stackleak:

real 12m20.335s (+0.85%)

user 11m23.283s

sys 1m8.221s

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 44 / 46



STACKLEAK Performance Impact (2)

Brief performance testing on x86_64

Hardware: Intel Core i7-4770, 16 GB RAM

Test 2, UNattractive:

$ hackbench -s 4096 -l 2000 -g 15 -f 25 -P

Average on 4.18: 9.08s

Average on 4.18+stackleak: 9.47s (+4.3%)

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 45 / 46



STACKLEAK Performance Impact (3)

Conclusions

1. The performance penalty varies for di�erent workloads

2. Test STACKLEAK on your expected workload before deploying in
production (STACKLEAK_METRICS may help)

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 46 / 46


