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Motivation of This Talk

Motivation

Today I see that the ideas from this talk could have been very useful

for me 1.5 years ago, when I was beginning my participation in KSPP.

That's why I would like to share them.
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Goals of This Talk

1 Involve more enthusiasts in Linux kernel security

2 Share the lessons I learned during kernel security development

3 Communicate on how we can improve our approaches
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Who is Involved in Linux Kernel Security?
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About LSM

Linux Security Modules (LSM) is a framework that allows the Linux

kernel to support a variety of computer security models

LSM is primarily focused on supporting access control modules

Projects: APPARMOR, SELINUX, SMACK, TOMOYO, YAMA...
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Who is Involved in Linux Kernel Security?
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About syzkaller

syzkaller is an unsupervised coverage-guided kernel fuzzer

It gives great power in combination with sanitizers

syzbot system uses syzkaller for continuous Linux kernel fuzzing

It's an awesome project!

Read the �Tale of thousand kernel bugs� by Dmitry Vyukov
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https://events.linuxfoundation.org/wp-content/uploads/2017/11/Syzbot-and-the-Tale-of-Thousand-Kernel-Bugs-Dmitry-Vyukov-Google.pdf


Who is Involved in Linux Kernel Security?
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About grsecurity

A patch for Linux kernel which provides security enhancements

Includes PaX technologies

Introduced a lot of excellent ideas to OS security world

https://grsecurity.net/features.php

But now is closed to the community (commercial secret)

Last public version is for kernel 4.9 (April 2017)
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Who is Involved in Linux Kernel Security?
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About Kernel Self Protection Project

Security is more than �xing bugs

Linux kernel should handle errors/attacks safely

grsecurity & PaX ideas are the source of inspiration

KSPP goal

Eliminate vulnerability classes and exploitation methods

in the Linux kernel mainline
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Who is Involved in Linux Kernel Security?
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Between the Millstones: That's How Mainline Hardening Is Made

https://foodal.com/kitchen/general-kitchenware/grain-mills/best-mills-reviewed/
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KSPP Way: Between Scylla and Charybdis
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Linux Kernel Self Protection

Linux kernel self protection is a very complex area, there are:

Vulnerability classes

Exploitation techniques

Bug detection mechanisms

Defence technologies
I Mainline
I Out-of-tree
I Commercial
I Provided by hardware

Drawn by Daniel Reeve, made by weta

And they all have complex relations...
It would be nice to have a graphical representation for easier navigating!
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Linux Kernel Defence Map

So I created a Linux Kernel Defence Map

https://github.com/a13xp0p0v/linux-kernel-defence-map

Key concepts:

Each connection between nodes represents a relationship

N.B. This map doesn't cover cutting attack surface
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Linux Kernel Defence Map: Whole Picture
https://github.com/a13xp0p0v/linux-kernel-defence-map

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 18 / 46

https://github.com/a13xp0p0v/linux-kernel-defence-map


Linux Kernel Defence Map: STACKLEAK Part
https://github.com/a13xp0p0v/linux-kernel-defence-map

.

.

.
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https://github.com/a13xp0p0v/linux-kernel-defence-map


Linux Kernel Defence Map: More Info
https://github.com/a13xp0p0v/linux-kernel-defence-map

.

Got interested? Read the sources and start experimenting!

grsecurity features

Linux kernel security documentation

Kernel Self Protection Project recommended settings

Linux kernel mitigation checklist by Shawn C

Check the hardening options in your kernel .config with

https://github.com/a13xp0p0v/kcon�g-hardened-check
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https://github.com/a13xp0p0v/linux-kernel-defence-map
https://grsecurity.net/features.php
https://www.kernel.org/doc/html/latest/security/self-protection.html
http://www.kernsec.org/wiki/index.php/Kernel_Self_Protection_Project/Recommended_Settings
https://github.com/hardenedlinux/grsecurity-101-tutorials/blob/master/kernel_mitigation.md
https://github.com/a13xp0p0v/kconfig-hardened-check


My lessons from participation in KSPP

Story 1

Blocking consecutive double kfree()
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CVE-2017-2636

Once upon a time my customized syzkaller setup got a suspicious kernel oops

I created a stable repro and found a race condition in drivers/tty/n_hdlc.c

It caused a double-free bug, which I managed to exploit for LPE

Debian, Ubuntu, Fedora, RHEL were a�ected (CONFIG_N_HDLC=m)

Responsible disclosure:
http://seclists.org/oss-sec/2017/q1/569

Detailed write-up about CVE-2017-2636 exploitation:
https://a13xp0p0v.github.io/2017/03/24/CVE-2017-2636.html

http://�ndwallpaper.info/street+racing+cars/page/7/
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Surprise During PoC Development

SLUB allocator accepts consecutive kfree() of the same address

Kernel heap spraying after double-free gave me two sk_buff's

pointing to the same memory

So double-free turns into use-after-free

slub_debug detects this, but nobody uses it in production
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Double-Free -> Use-After-Free on sk_bu�
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Blocking Consecutive Double-Free in SLUB (1)

I proposed a patch with a BUG_ON() similar to fasttop check in GNU

C library allocator. It provoked a lively discussion at LKML:

Cons
introduces some performance penalty for
the default SLUB functionality

duplicates some part of already existing
slub_debug feature

causes a kernel oops in case of a
double-free error

Pros
slub_debug is not enabled in Linux
distributions by default (noticeable
performance impact)

when the allocator detects a
double-free, some severe kernel error has
already occurred on behalf of some
process. It's not worth trusting that
process (which might be an exploit).
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https://lore.kernel.org/lkml/1500309907-9357-1-git-send-email-alex.popov@linux.com/T/#u 


Blocking Consecutive Double-Free in SLUB (2)

But �nally this check got into the mainline kernel under

CONFIG_SLAB_FREELIST_HARDENED

Kudos to Kees Cook for his diplomacy

And today Ubuntu and Fedora kernels have this option

enabled by default!
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Lessons From This Story

Exploit practice can give interesting ideas for hardening

Performance has the top priority for the Linux kernel maintainers

But security can come under con�g options, distros enable them

BUG_ON() provokes controversy [see the next slide]
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About BUG_ON()

Do your best to handle the error without BUG_ON()

Think about using WARN()

If you can't avoid BUG_ON(), double-check that you don't hold any core

spinlocks, do see the oops and don't kill the whole machine. No, triple-check!

Read these emails from Linus (several times):

I �Just report it. Do no harm.�
https://lkml.org/lkml/2017/11/21/356

I About BUG_ON() and locks
http://lkml.iu.edu/hypermail/linux/kernel/1610.0/01217.html

I BUG_ON() is forbidden for hardening (???)
https://lkml.org/lkml/2018/8/15/450
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My lessons from participation in KSPP

Story 2

Bringing PAX_MEMORY_STACKLEAK into

the Linux kernel mainline
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STACKLEAK Overview

Awesome Linux kernel security feature

Developed by PaX Team

PAX_MEMORY_STACKLEAK in grsecurity/PaX patch (which is a

commercial secret now)

I extracted STACKLEAK from the last public version of

grsecurity/PaX patch and worked on upstreaming it
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STACKLEAK Upstreaming
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STACKLEAK Security Features

1 Erases the kernel stack at the end of syscalls

I Reduces the information that can be revealed through some kernel stack
leak bugs � complies with FDP_RIP.2 (Full Residual Information
Protection) of the Common Criteria standard

I Blocks some uninitialized kernel stack variable attacks (for example
CVE-2010-2963, CVE-2017-17712)

2 Improves runtime detection of kernel stack depth over�ow (blocks Stack Clash
attack)
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Uninitialized Stack Variable Attack
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Mitigation of Uninitialized Stack Variable Attacks
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Stack Clash Attack for the Kernel Stack

Idea by Gael Delalleau: "Large memory management vulnerabilities" (2005)
Revisited in "The Stack Clash" by Qualys Research Team (2017)
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https://cansecwest.com/core05/memory_vulns_delalleau.pdf
https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt


STACKLEAK Upstreaming
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STACKLEAK: Technical Details

Linus merged it into kernel v4.20/5.0 with this funny message:

I'm still not a huge fan, but I didn't hate it enough not to pull it. So pulled,
Linus

Slides from the talk at LSS NA 2018:
https://schd.ws/hosted_�les/lssna18/b7/stackleak_LSS_NA_2018.pdf

Article at LWN: https://lwn.net/Articles/764325/

Dispute with Brad Spengler: https://lwn.net/Articles/764685/

N.B. if you need STACKLEAK with alloca() checking, use v14:

https://www.openwall.com/lists/kernel-hardening/2018/07/26/3
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STACKLEAK Lessons: What Worked Well

1 Cover letter describing the goal, bene�ts, performance impact

2 Release early, release often (RERO)

I RFC tag for early versions of the patch series
I TODO list and changelog in the cover letter

3 Careful handling of the feedback from the community and Brad

4 Cool-headed separating technical arguments from personal
attacks

5 Flexibility and persistence
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KSPP Motto

From Terminator 2: Judgment Day
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STACKLEAK Lessons: What Didn't Work

1 Illusions that my work will be appreciated

2 Not expanding the list of recipients as development progresses

3 It looks like KSPP roadmap is not coordinated with Linus

I The risk of getting NAK after a year of hard work
I The lack of clear rules for hardening patches, e.g. about:

F Assembly language usage
F Runtime disabling of the feature
F BUG_ON() usage

4 Not knowing Monty Python comedy ;)
https://lkml.org/lkml/2018/8/15/510
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How Can We Do Better?

Working harder, of course!

[?] Having a list of kernel hardening �behavior patterns�

approved by maintainers

[?] Having the KSPP roadmap coordinated with maintainers

[?] Large companies/organizations explicitly

requesting/promoting concrete kernel hardening features

More enthusiastic people participating, for sure!
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Closing Thoughts

Linux kernel development is very interesting

Linux kernel hacking and hardening is TWICE as interesting and

sometimes dangerous :)

But HERE you can �nd BIG challenges and get joy in the battle!
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Thanks! Questions?

alex.popov@linux.com
@a13xp0p0v

http://blog.ptsecurity.com/
@ptsecurity

mailto:alex.popov@linux.com
https://twitter.com/a13xp0p0v
http://blog.ptsecurity.com/
https://twitter.com/ptsecurity


STACKLEAK Performance Impact (1)

Brief performance testing on x86_64
Hardware: Intel Core i7-4770, 16 GB RAM
Test 1, attractive: building the Linux kernel with x86_64 defcon�g

$ time make

Result on 4.18:

real 12m14.124s

user 11m17.565s

sys 1m6.943s

Result on 4.18+stackleak:

real 12m20.335s (+0.85%)

user 11m23.283s

sys 1m8.221s
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STACKLEAK Performance Impact (2)

Brief performance testing on x86_64

Hardware: Intel Core i7-4770, 16 GB RAM

Test 2, UNattractive:

$ hackbench -s 4096 -l 2000 -g 15 -f 25 -P

Average on 4.18: 9.08s

Average on 4.18+stackleak: 9.47s (+4.3%)
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STACKLEAK Performance Impact (3)

Conclusions

1. The performance penalty varies for di�erent workloads

2. Test STACKLEAK on your expected workload before deploying in
production (STACKLEAK_METRICS may help)
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