Between the Millstones:

Lessons of Self-Funded Participation in
Kernel Self Protection Project

Alexander Popov
Positive Technologies

November 3, 2018

LINUX
PITER

About Me

o Alexander Popov
o Linux kernel developer

o Security researcher at [EI=I=TR gAY/l f S{w 5/ Nfa [N =[S

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP

Motivation of This Talk

Today | see that the ideas from this talk could have been very useful
for me 1.5 years ago, when | was beginning my participation in KSPP.

That's why | would like to share them.

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP

Goals of This Talk

O Involve more enthusiasts in Linux kernel security
@ Share the lessons | learned during kernel security development

@ Communicate on how we can improve our approaches

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP

Alexander Popov (Positive Technologies)

Who is Involved in Linux Kernel Security?

Linus and

. strong criticism
maintainers

patches & bug reports

normal people

syzkaﬂer
team security people

.
.

.

(u MSTTIITIII
-'.‘

grsecurity &
PaX team

Between the Millstones: Lessons of Self-Funded Participation in KSPP

About LSM

o Linux Security Modules (LSM) is a framework that allows the Linux

kernel to support a variety of computer security models

o LSM is primarily focused on supporting access control modules

o Projects: APPARMOR, SELINUX, SMACK, TOMOYO, YAMA...

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP

Alexander Popov (Positive Technologies)

Who is Involved in Linux Kernel Security?

Linus and

. strong criticism
maintainers

patches & bug reports

normal people

syzkaﬂer
team security people

.
.

.

(u MSTTIITIII
-'.‘

grsecurity &
PaX team

Between the Millstones: Lessons of Self-Funded Participation in KSPP

About syzkaller

syzkaller is an unsupervised coverage-guided kernel fuzzer

It gives great power in combination with sanitizers

syzbot system uses syzkaller for continuous Linux kernel fuzzing

e It's an awesome project!

Read the “Tale of thousand kernel bugs” by Dmitry Vyukov

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP

https://events.linuxfoundation.org/wp-content/uploads/2017/11/Syzbot-and-the-Tale-of-Thousand-Kernel-Bugs-Dmitry-Vyukov-Google.pdf

Alexander Popov (Positive Technologies)

Who is Involved in Linux Kernel Security?

Linus and

. strong criticism
maintainers

patches & bug reports

normal people

syzkaﬂer
team security people

.
.

.

(u MSTTIITIII
-'.‘

grsecurity &
PaX team

Between the Millstones: Lessons of Self-Funded Participation in KSPP

About grsecurity

o A patch for Linux kernel which provides security enhancements
o Includes PaX technologies

o Introduced a lot of excellent ideas to OS security world

https://grsecurity.net/features.php

o But now is closed to the community (commercial secret)

o Last public version is for kernel 4.9 (April 2017)

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP

https://grsecurity.net/features.php

Alexander Popov (Positive Technologies)

Who is Involved in Linux Kernel Security?

Linus and

. strong criticism
maintainers

patches & bug reports

normal people

syzkaﬂer
team security people

.
.

.

(u MSTTIITIII
-'.‘

grsecurity &
PaX team

Between the Millstones: Lessons of Self-Funded Participation in KSPP

About Kernel Self Protection Project

o Security is more than fixing bugs
o Linux kernel should handle errors/attacks safely

o grsecurity & PaX ideas are the source of inspiration

KSPP goal

Eliminate vulnerability classes and exploitation methods

in the Linux kernel mainline

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP

Alexander Popov (Positive Technologies)

Who is Involved in Linux Kernel Security?

Linus and

. strong criticism
maintainers

patches & bug reports

normal people

syzkaﬂer
team security people

.
.

.

(u MSTTIITIII
-'.‘

grsecurity &
PaX team

Between the Millstones: Lessons of Self-Funded Participation in KSPP

Between the Millstones: That's How Mainline Hardening Is Made

: gt AP D SR
https://foodal.com/kitchen/general-kitchenware /grain-mills /best-mills-reviewed /

Alexander Popov (Positive Technologies) Between the M Lessons of Sel pation in KSPP

KSPP Way: Between Scylla and Charybdis

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 15 / 46

Linux Kernel Self Protection

Linux kernel self protection is a very complex area, there are:
e Vulnerability classes
e Exploitation techniques
e Bug detection mechanisms

e Defence technologies
» Mainline
» Out-of-tree
» Commercial
» Provided by hardware

And they all have complex relations...
It would be nice to have a graphical representation for easier navigating!

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP

Linux Kernel Defence Map

e So | created a Linux Kernel Defence Map
https://github.com /al3xpOpOv/linux-kernel-defence-map

o Key concepts:

Legend:

Mainline Defences - Commercial Defences HW Defences
Defence Techniques - Vulnerabilities Exploitation Techniques

e Each connection between nodes represents a relationship

e N.B. This map doesn’t cover cutting attack surface

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP

https://github.com/a13xp0p0v/linux-kernel-defence-map

Linux Kernel Defence Map: Whole Picture

https://github.com /al3xp0p0v/linux-kernel-defence-map

|
i

(it

E‘Hﬂ!C“

I

| |

P
|
I

TN

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP

https://github.com/a13xp0p0v/linux-kernel-defence-map

Linux Kernel Defence Map: STACKLEAK Part

https://github.com/al3xp0p0v/linux-kernel-defence-map

/ Stack Depth Overflow (CWE-674,7)
STACKLEAK ——— PAX_MEMORY_STACKLEAK —» Uninitialized Vars (CWE457)‘x
\» Info Exposure (CWE-200)

Legend:

Mainline Defences Commercial Defences Vulnerabilities -

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Pa

https://github.com/a13xp0p0v/linux-kernel-defence-map

Linux Kernel Defence Map: More Info

https://github.com /al3xp0p0v/linux-kernel-defence-map

Got interested? Read the sources and start experimenting!

e grsecurity features

o Linux kernel security documentation

o Kernel Self Protection Project recommended settings

o Linux kernel mitigation checklist by Shawn C

Check the hardening options in your kernel .config with

https: //github.com /al13xp0p0v/kconfig-hardened-check

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP

https://github.com/a13xp0p0v/linux-kernel-defence-map
https://grsecurity.net/features.php
https://www.kernel.org/doc/html/latest/security/self-protection.html
http://www.kernsec.org/wiki/index.php/Kernel_Self_Protection_Project/Recommended_Settings
https://github.com/hardenedlinux/grsecurity-101-tutorials/blob/master/kernel_mitigation.md
https://github.com/a13xp0p0v/kconfig-hardened-check

My lessons from participation in KSPP

Blocking consecutive double kfree()

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP

CVE-2017-2636

@ Once upon a time my customized syzkaller setup got a suspicious kernel oops

| created a stable repro and found a race condition in drivers/tty/n_hdlc.c

It caused a double-free bug, which | managed to exploit for LPE

o Debian, Ubuntu, Fedora, RHEL were affected (CONFIG_N_HDLC=m)

Responsible disclosure:
http://seclists.org/oss-sec/2017 /q1 /569

Detailed write-up about CVE-2017-2636 exploitation:
https://al3xp0p0v.github.io/2017/03/24 /CVE-2017-2636.html

http://findwallpaper.info/street+racing+cars/page/7/

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP

http://seclists.org/oss-sec/2017/q1/569
https://a13xp0p0v.github.io/2017/03/24/CVE-2017-2636.html

Surprise During PoC Development

o SLUB allocator accepts consecutive kfree () of the same address

o Kernel heap spraying after double-free gave me two sk_buff's

pointing to the same memory
o So double-free turns into use-after-free

o slub_debug detects this, but nobody uses it in production

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP

struct sk_buff {

head — |
.end

o

Double-Free -> Use-After-Free on sk buff

struct sk_buff {

Alexander Popov (Positive Technologies)

struct skbfsharedw/

destructor_arg

struct ubuf_info {
void (*callback)(void %, bool)

B

Between the Millstones: Lessons of Self-Funded Participation in KSPP

Blocking Consecutive Double-Free in SLUB (1)

| proposed a patch with a BUG_ON() similar to fasttop check in GNU
C library allocator. It provoked a lively discussion at LKML:

Cons Pros
@ introduces some performance penalty for @ slub_debug is not enabled in Linux
the default SLUB functionality distributions by default (noticeable
@ duplicates some part of already existing performance impact)
slub_debug feature @ when the allocator detects a
o causes a kernel oops in case of a double-free, some severe kernel error has
double-free error already occurred on behalf of some

process. It's not worth trusting that
process (which might be an exploit).

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP

https://lore.kernel.org/lkml/1500309907-9357-1-git-send-email-alex.popov@linux.com/T/#u

Blocking Consecutive Double-Free in SLUB (2)

o But finally this check got into the mainline kernel under

CONFIG_SLAB_FREELIST_HARDENED
o Kudos to Kees Cook for his diplomacy

o And today Ubuntu and Fedora kernels have this option
enabled by default!

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP

Lessons From This Story

Exploit practice can give interesting ideas for hardening

o Performance has the top priority for the Linux kernel maintainers

But security can come under config options, distros enable them

BUG_ON () provokes controversy [see the next slide]

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP

About BUG_ON()

e Do your best to handle the error without BUG_ON ()
e Think about using WARN ()

e If you can't avoid BUG_ON (), double-check that you don't hold any core
spinlocks, do see the oops and don't kill the whole machine. No, triple-check!

o Read these emails from Linus (several times):

» “Just report it. Do no harm.”
https://lkml.org/lkml/2017/11/21 /356

» About BUG_ON() and locks
http://lkml.iu.edu/hypermail /linux/kernel /1610.0/01217.html

» BUG_ON() is forbidden for hardening (777)
https://lkml.org/lkml/2018/8/15/450

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP

https://lkml.org/lkml/2017/11/21/356
http://lkml.iu.edu/hypermail/linux/kernel/1610.0/01217.html
https://lkml.org/lkml/2018/8/15/450

My lessons from participation in KSPP

Bringing PAX _MEMORY _STACKLEAK into

the Linux kernel mainline

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP

STACKLEAK Overview

o Awesome Linux kernel security feature

o Developed by PaX Team

o PAX_MEMORY_STACKLEAK in grsecurity/PaX patch (which is a
commercial secret now)

o | extracted STACKLEAK from the last public version of
grsecurity/PaX patch and worked on upstreaming it

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP

STACKLEAK Upstreaming

"v15 Sisyphus edition"
(according to Brad Spengler) 1
\Y

Merged into v4.20 -- Nov 2018

v13 Burnt by Linus (2nd time) -- Aug 2018

(according to Brad Spengler)

v8 Burnt by Linus (1st time), VLA cleanup starts -- Mar 2018

V6
Rebasing onto PTI, Meltdown is published -- Jan 2018

Stack Clash is published -- Jun 2017

My decision to work on STACKLEAK -- May 2017
grsecurity: NO MORE public patches -- Apr 2017

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Pa

STACKLEAK Security Features

O Erases the kernel stack at the end of syscalls

» Reduces the information that can be revealed through some kernel stack
leak bugs — complies with FDP_RIP.2 (Full Residual Information
Protection) of the Common Criteria standard

» Blocks some uninitialized kernel stack variable attacks (for example
CVE-2010-2963, CVE-2017-17712)

@ Improves runtime detection of kernel stack depth overflow (blocks Stack Clash
attack)

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP

Uninitialized Stack Variable Attack

USERSPACE

payload #1 prepared |
in userspace

arget_addr

invoke syscall #1

target_addr copied
| copy_from_user() target_addr from
' arget_addr |) userspace

return to userspace

kernel thread stack

payload #2 prepared not
in userspace invoke syscall #2 initialized
|
1 0x42
r arget_a
! copy_from_user() 0x43
I

arbitrary write

payload delivered
to kernelspace

‘ ‘ return to userspace

invoke syscall #3

|
| T T e
| trigger the payload

|

Alexander Popov (Positive Technologies) tween the Millstones: Lessons of Self-Funded Part;

Mitigation of Uninitialized Stack Variable Attacks

USERSPACE

payload #1 prepared |
in userspace
,
invoke syscall #1
= T

arget_adar

\ copy_from_user()
! stackleak_erase()
return to userspace

payload #1
is erased

kernel thread stack

not
initialized

payload #2 prepared
in userspace invoke syscall #2

STACKLEAK_POISON
|
1
1
|
1

0x42

copy_from_user() .OJZF;F

points to unused
hole in virtual
memory

I_I return to userspace

Alexander Popov (Positive Technologies)

Stack Clash Attack for the Kernel Stack

Idea by Gael Delalleau: "Large memory management vulnerabilities" (2005)
Revisited in "The Stack Clash" by Qualys Research Team (2017)

thread stack top

old stack pointerf
alloca()-ted
memory
<«
thread stack bottom| —_— — =
guard page
another thread stack 3 l new stack pointer

or a heap object
S

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP

https://cansecwest.com/core05/memory_vulns_delalleau.pdf
https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt

STACKLEAK Upstreaming

"v15 Sisyphus edition"
(according to Brad Spengler) 1
\Y

Merged into v4.20 -- Nov 2018

v13 Burnt by Linus (2nd time) -- Aug 2018

(according to Brad Spengler)

v8 Burnt by Linus (1st time), VLA cleanup starts -- Mar 2018

V6
Rebasing onto PTI, Meltdown is published -- Jan 2018

Stack Clash is published -- Jun 2017

My decision to work on STACKLEAK -- May 2017
grsecurity: NO MORE public patches -- Apr 2017

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Pa

STACKLEAK: Technical Details

o Linus merged it into kernel v4.20/5.0 with this funny message:

I'm still not a huge fan, but | didn't hate it enough not to pull it. So pulled, J
Linus

o Slides from the talk at LSS NA 2018:
https://schd.ws/hosted files/Issnal8/b7/stackleak LSS NA 2018.pdf

o Article at LWN: https://lwn.net/Articles/764325/

o Dispute with Brad Spengler: https://lwn.net/Articles/764685/

o N.B. if you need STACKLEAK with alloca() checking, use v14:
https://www.openwall.com/lists/kernel-hardening /2018/07/26/3

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP

https://schd.ws/hosted_files/lssna18/b7/stackleak_LSS_NA_2018.pdf
https://lwn.net/Articles/764325/
https://lwn.net/Articles/764685/
https://www.openwall.com/lists/kernel-hardening/2018/07/26/3

STACKLEAK Lessons: What Worked Well

@ Cover letter describing the goal, benefits, performance impact
Q Release early, release often (RERO)

» RFC tag for early versions of the patch series
» TODO list and changelog in the cover letter

© Careful handling of the feedback from the community and Brad

@ Cool-headed separating technical arguments from personal
attacks

© Flexibility and persistence

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP

KSPP Motto

KSPP Motto

S

Flekibility And PersiStghee

N

From Terminator 2: Judgment Day

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP 39 / 46

STACKLEAK Lessons: What Didn't Work

@ lllusions that my work will be appreciated
@ Not expanding the list of recipients as development progresses
© It looks like KSPP roadmap is not coordinated with Linus

» The risk of getting NAK after a year of hard work
» The lack of clear rules for hardening patches, e.g. about:

» Assembly language usage
» Runtime disabling of the feature
*» BUG_ON() usage

@ Not knowing Monty Python comedy ;)
https://lkml.org/lkml/2018/8/15/510

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP

https://lkml.org/lkml/2018/8/15/510

How Can We Do Better?

e Working harder, of course!

o [?] Having a list of kernel hardening “behavior patterns”

approved by maintainers
o [?] Having the KSPP roadmap coordinated with maintainers

o [?] Large companies/organizations explicitly SAFETY BELNET

IN THIS AREA

requesting/promoting concrete kernel hardening features

e More enthusiastic people participating, for sure!

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP

Closing Thoughts

o Linux kernel development is very interesting
o Linux kernel hacking and hardening is TWICE as interesting and
sometimes dangerous :)

o But HERE you can find BIG challenges and get joy in the battle!

Between the Millstones: Lessons of Self-Funded Participation in KSPP

Alexander Popov (Positive Technologies)

Thanks! Questions?

alex.popov@linux.com
©al3xp0p0v

http://blog.ptsecurity.com/
Qptsecurity

~POSITIVE TECHNOLOGIES

mailto:alex.popov@linux.com
https://twitter.com/a13xp0p0v
http://blog.ptsecurity.com/
https://twitter.com/ptsecurity

STACKLEAK Performance Impact (1)

Brief performance testing on x86 64
Hardware: Intel Core i7-4770, 16 GB RAM
Test 1, attractive: building the Linux kernel with x86 64 defconfig

$ time make

Result on 4.18:

real 12mil14.124s
user 11ml7.565bs
sys 1m6.943s

Result on 4.18+stackleak:

real 12m20.335s (+0.85%)
user 11m23.283s
sys 1m8.221s

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP

STACKLEAK Performance Impact (2)

Brief performance testing on x86 64
Hardware: Intel Core i7-4770, 16 GB RAM
Test 2, UNattractive:
$ hackbench -s 4096 -1 2000 -g 15 -f 25 -P

Average on 4.18: 9.08s
Average on 4.18+stackleak: 9.47s (+4.37%)

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP

STACKLEAK Performance Impact (3)

1. The performance penalty varies for different workloads

2. Test STACKLEAK on your expected workload before deploying in
production (STACKLEAK_METRICS may help)

Alexander Popov (Positive Technologies) Between the Millstones: Lessons of Self-Funded Participation in KSPP

