
 1 / 20

Failure-Atomic fle
updates for Linux

Christoph Hellwig

 2 / 20

Data integrity is hard

● Writes in Posix are not durable by default:

– Required a f(data)sync to be persistent
– Or the O_SYNC / O_DSYNC options
– Or and even bigger hammer on macOS

● But even the order of writes is undefned:

– For example the OS frst writes bytes 1024
to 4095 frst, then 0 to 1023 for a 4kiB fle

 3 / 20

Solution 1: The fsync and
rename dance

● The only portable way to write or update a
fle atomically is to write into a new fle, fsync
it and then rename it into place

– Due to rename() semantics that can also
be used to replace and existing fle

fd = open(tmpname, O_CREAT | O_WRONLY, 0600);
write(fd, data, datalen);
…
fdatasync(fd);

rename(tmpname, realname);
dirfd = open(dirname(realname), O_RDONLY | O_DIRECTORY);
fsync(dirfd);

 4 / 20

Issues with fsync and
rename

● High overhead:

– Needs a complete rewrite of the fle every
time

● Can’t easily be used in combination with
mmap()

 5 / 20

Solution 2: a journal/log in
the application

● Instead of directly overwriting fles keep a
separate log with intended updates, and only
update the main data area after the log
commit

● Still needs checksums and sequence
numbers to deal with torn writes in the log

● Often used by databases

 6 / 20

Logging issues

● Management of the data area is non-trivial

– Only worth if for complex applications like
databases

– Writes a lot of data twice
– Duplicates a lot of fle system functionality

 7 / 20

File system help for safely
updating fles

● The O_ATOMIC fag was frst proposed in
2015 by Hewlett-Packard:

– If a fle is opened with the O_ATOMIC fag,
existing fle data on disk will not be
updated until fdatasync is called on the
fle, or msync on a range of a mapped fle

fd = open(realname, O_ATOMIC | O_WRONLY);
pwrite(fd, data, datalen, someoffset);
…
fdatasync(fd);

 8 / 20

Everyone loves magic pixie
dust..

 9 / 20

But how will it work?

 10 / 20

Refinks
● Various Linux fle systems (btrfs, xfs, ocfs2)

allow to clone fles for Copy on Write
operations

– the block map in multiple fles reference
the same blocks

– Once a rage gets written to, the blocks are
unshared, and new blocks are allocated

Inode 19
Offset 0
Len 256
Disk block 142

Offset 256
Len 20
Disk block 1948

Offset 276
Len 10
Disk block 9562

Inode 31
Offset 0
Len 256
Disk block 142

Offset 256
Len 20
Disk block 1948

Offset 276
Len 10
Disk block 9562

 11 / 20

Refinks in XFS

● In XFS blocks allocated for in-progress COW
operations are kept in the “COW fork”, which
includes an alternative block map

● Once a write I/O to shared block range has
completed the block mappings are moved
from the COW fork to the normal data fork

 12 / 20

O_ATOMIC in XFS

● The O_ATOMIC support makes use of the
refink infrastructure and the COW fork, and
thus is very simple (~ 100 lines of code):

– For a fle opened using O_ATOMIC all writes
are treated like those needing an out of
place write and a new block allocation, and
thus are tracked in the COW fork.

– On I/O completion the newly allocated
blocks are not moved to the data fork

– Only an explicit fdatasync moves the new
blocks to the data fork

 13 / 20

O_ATOMIC in XFS

After writing data, before fdatasync:

Cow Fork:

Data Fork:

Before writing data

Cow Fork:

Data Fork:

After fdatasync:

Cow Fork:

Data Fork:

 14 / 20

O_ATOMIC performance

● With O_ATOMIC each overwrite becomes
similar to an allocating (append or hole fll)
write.

– Depending on the media and workload this
can be a 100% or more degradation

– But compared to rewriting the whole fle or
logging it still is a lot faster

● And there is another trick waiting to be
implemented..

 15 / 20

O_ATOMIC for block devices

● NVMe devices support the concept of larger
than sector size atomic writes:

– An “Atomic Write Unit Power Fail” value is
exposed that tells how blocks will always
be updated atomically if written together

● As there is no fdatasync equivalent our model
won’t fully work for block devices

● But there still is O_DSYNC

 16 / 20

O_ATOMIC for NVMe

● Thus we can claim support for O_ATOMIC
when only used together with O_DSYNC for
NVMe, including a limitation on the write size

– For example databases can for example
write larger commit blocks atomically

– Or we can use the block device support
internally in the fle system to avoid new
block allocations for some O_ATOMIC
writes.

 17 / 20

O_ATOMIC status

● Patches frst posted in February 2017
● Still haven’t resubmitted them because I’m

too busy, but I’ll get to it.

– The biggest stumbling block is automated
power fail testing

– But we now have dm-log-writes in the
kernel, and test cases using it in xfstests

 18 / 20

Limitations and future work

● The maximum size of all atomic writes until a
fdatasync is limited to 2GiB due to
transaction subsystems details

● Both refinks and O_ATOMIC are not
supported for the DAX mode that provide
direct access to persistent memory

● The XFS support should make use of block
device capabilities in NVMe transparently to
the application

 19 / 20

Questions?

 20 / 20

Links

● Ensuring data reaches disk:

https://lwn.net/Articles/457667/

● Failure-Atomic Updates of Application Data in a Linux File
System:

https://www.usenix.org/system/fles/conference/fast15/fast15-paper-verma.pdf

● NVMe 1.3a specifcation:

http://nvmexpress.org/wp-content/uploads/NVM-Express-1_3a-20171024_ratifed.pdf

● XFS patches:

https://www.spinics.net/lists/linux-xfs/msg04536.html

http://git.infradead.org/users/hch/vfs.git/shortlog/refs/heads/O_ATOMIC

https://lwn.net/Articles/457667/
https://www.usenix.org/system/files/conference/fast15/fast15-paper-verma.pdf
http://nvmexpress.org/wp-content/uploads/NVM-Express-1_3a-20171024_ratified.pdf
https://www.spinics.net/lists/linux-xfs/msg04536.html
http://git.infradead.org/users/hch/vfs.git/shortlog/refs/heads/O_ATOMIC

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

