
Containers without a Container Manager,
with systemd

Linux Piter 2017, St. Petersburg, Russia

November 2017

Containers without a Container Manager, with systemd



Containers?

. . . Resource Bundling, Sandboxing, Delivery

Let’s focus on the first two!

Containers without a Container Manager, with systemd



Containers?

. . . Resource Bundling,

Sandboxing, Delivery

Let’s focus on the first two!

Containers without a Container Manager, with systemd



Containers?

. . . Resource Bundling, Sandboxing,

Delivery

Let’s focus on the first two!

Containers without a Container Manager, with systemd



Containers?

. . . Resource Bundling, Sandboxing, Delivery

Let’s focus on the first two!

Containers without a Container Manager, with systemd



Containers?

. . . Resource Bundling, Sandboxing, Delivery

Let’s focus on the first two!

Containers without a Container Manager, with systemd



Resource Bundling

Containers without a Container Manager, with systemd



RootDirectory=

RootImage=

Containers without a Container Manager, with systemd



RootDirectory=

RootImage=

Containers without a Container Manager, with systemd



Images for RootImage=?

Discoverable GPT, unambiguous GPT or MBR, raw file system

For example, create it with mkosi

dm-verity, LUKS, . . .

Containers without a Container Manager, with systemd



Images for RootImage=?

Discoverable GPT,

unambiguous GPT or MBR, raw file system

For example, create it with mkosi

dm-verity, LUKS, . . .

Containers without a Container Manager, with systemd



Images for RootImage=?

Discoverable GPT, unambiguous GPT or MBR,

raw file system

For example, create it with mkosi

dm-verity, LUKS, . . .

Containers without a Container Manager, with systemd



Images for RootImage=?

Discoverable GPT, unambiguous GPT or MBR, raw file system

For example, create it with mkosi

dm-verity, LUKS, . . .

Containers without a Container Manager, with systemd



Images for RootImage=?

Discoverable GPT, unambiguous GPT or MBR, raw file system

For example, create it with mkosi

dm-verity, LUKS, . . .

Containers without a Container Manager, with systemd



Images for RootImage=?

Discoverable GPT, unambiguous GPT or MBR, raw file system

For example, create it with mkosi

dm-verity, LUKS, . . .

Containers without a Container Manager, with systemd



RootImage=/RootDirectory=

Fancy chroot()

Inherits the same problems

Containers without a Container Manager, with systemd



RootImage=/RootDirectory=

Fancy chroot()

Inherits the same problems

Containers without a Container Manager, with systemd



RootImage=/RootDirectory=

Fancy chroot()

Inherits the same problems

Containers without a Container Manager, with systemd



MountAPIVFS=

Containers without a Container Manager, with systemd



How to share data?

BindPaths=, BindReadOnlyPaths=

RuntimeDirectory=, StateDirectory=, CacheDirectory=,
LogsDirectory, ConfigurationDirectory=

Also nice to keep bundles self-contained, no need for tmpfiles.d/

Containers without a Container Manager, with systemd



How to share data?

BindPaths=, BindReadOnlyPaths=

RuntimeDirectory=, StateDirectory=, CacheDirectory=,
LogsDirectory, ConfigurationDirectory=

Also nice to keep bundles self-contained, no need for tmpfiles.d/

Containers without a Container Manager, with systemd



How to share data?

BindPaths=, BindReadOnlyPaths=

RuntimeDirectory=, StateDirectory=, CacheDirectory=,
LogsDirectory, ConfigurationDirectory=

Also nice to keep bundles self-contained, no need for tmpfiles.d/

Containers without a Container Manager, with systemd



How to share data?

BindPaths=, BindReadOnlyPaths=

RuntimeDirectory=, StateDirectory=, CacheDirectory=,
LogsDirectory, ConfigurationDirectory=

Also nice to keep bundles self-contained, no need for tmpfiles.d/

Containers without a Container Manager, with systemd



How to share user table?

Not at all: use PrivateUsers=, to disconnect the tables

nss-systemd synthesizes user entries for both root and nobody,
the user IDs always needed, and always defined the same way.

Missing: how to make sure the host and the bundle environment
can share the service’s own user identity?

Containers without a Container Manager, with systemd



How to share user table?

Not at all: use PrivateUsers=, to disconnect the tables

nss-systemd synthesizes user entries for both root and nobody,
the user IDs always needed, and always defined the same way.

Missing: how to make sure the host and the bundle environment
can share the service’s own user identity?

Containers without a Container Manager, with systemd



How to share user table?

Not at all: use PrivateUsers=, to disconnect the tables

nss-systemd synthesizes user entries for both root and nobody,
the user IDs always needed, and always defined the same way.

Missing: how to make sure the host and the bundle environment
can share the service’s own user identity?

Containers without a Container Manager, with systemd



How to share user table?

Not at all: use PrivateUsers=, to disconnect the tables

nss-systemd synthesizes user entries for both root and nobody,
the user IDs always needed, and always defined the same way.

Missing: how to make sure the host and the bundle environment
can share the service’s own user identity?

Containers without a Container Manager, with systemd



Sandboxing

Containers without a Container Manager, with systemd



Established way to sandbox UNIX services:

UNIX users

DynamicUser=

Also nice to keep bundles self-contained, no need for sysusers.d/

No artifacts

Containers without a Container Manager, with systemd



Established way to sandbox UNIX services: UNIX users

DynamicUser=

Also nice to keep bundles self-contained, no need for sysusers.d/

No artifacts

Containers without a Container Manager, with systemd



Established way to sandbox UNIX services: UNIX users

DynamicUser=

Also nice to keep bundles self-contained, no need for sysusers.d/

No artifacts

Containers without a Container Manager, with systemd



Established way to sandbox UNIX services: UNIX users

DynamicUser=

Also nice to keep bundles self-contained, no need for sysusers.d/

No artifacts

Containers without a Container Manager, with systemd



Established way to sandbox UNIX services: UNIX users

DynamicUser=

Also nice to keep bundles self-contained, no need for sysusers.d/

No artifacts

Containers without a Container Manager, with systemd



RemoveIPC=

PrivateTmp=

No artifacts

Containers without a Container Manager, with systemd



RemoveIPC=

PrivateTmp=

No artifacts

Containers without a Container Manager, with systemd



RemoveIPC=

PrivateTmp=

No artifacts

Containers without a Container Manager, with systemd



PrivateDevices=

PrivateNetwork=

IPAddressAllow=/IPAddressDeny=

Containers without a Container Manager, with systemd



PrivateDevices=

PrivateNetwork=

IPAddressAllow=/IPAddressDeny=

Containers without a Container Manager, with systemd



PrivateDevices=

PrivateNetwork=

IPAddressAllow=/IPAddressDeny=

Containers without a Container Manager, with systemd



ProtectKernelTunables=

ProtectKernelModules=

ProtectControlGroups=

Containers without a Container Manager, with systemd



ProtectKernelTunables=

ProtectKernelModules=

ProtectControlGroups=

Containers without a Container Manager, with systemd



ProtectKernelTunables=

ProtectKernelModules=

ProtectControlGroups=

Containers without a Container Manager, with systemd



SystemCallFilter=

Now with system call groups!

Containers without a Container Manager, with systemd



SystemCallFilter=

Now with system call groups!

Containers without a Container Manager, with systemd



RestrictAddressFamilies=

SystemCallArchitectures=

RestrictNamespaces=

LockPersonality=

MemoryDenyWriteExecute=

RestrictRealtime=

KeyringMode=

Containers without a Container Manager, with systemd



RestrictAddressFamilies=

SystemCallArchitectures=

RestrictNamespaces=

LockPersonality=

MemoryDenyWriteExecute=

RestrictRealtime=

KeyringMode=

Containers without a Container Manager, with systemd



RestrictAddressFamilies=

SystemCallArchitectures=

RestrictNamespaces=

LockPersonality=

MemoryDenyWriteExecute=

RestrictRealtime=

KeyringMode=

Containers without a Container Manager, with systemd



RestrictAddressFamilies=

SystemCallArchitectures=

RestrictNamespaces=

LockPersonality=

MemoryDenyWriteExecute=

RestrictRealtime=

KeyringMode=

Containers without a Container Manager, with systemd



RestrictAddressFamilies=

SystemCallArchitectures=

RestrictNamespaces=

LockPersonality=

MemoryDenyWriteExecute=

RestrictRealtime=

KeyringMode=

Containers without a Container Manager, with systemd



RestrictAddressFamilies=

SystemCallArchitectures=

RestrictNamespaces=

LockPersonality=

MemoryDenyWriteExecute=

RestrictRealtime=

KeyringMode=

Containers without a Container Manager, with systemd



RestrictAddressFamilies=

SystemCallArchitectures=

RestrictNamespaces=

LockPersonality=

MemoryDenyWriteExecute=

RestrictRealtime=

KeyringMode=

Containers without a Container Manager, with systemd



Outlook: portable service generator

Iterate through bundle images/dirs in /var/lib/portables,
extract relevant unit files, make them available on the host

Extend them with RootImage=/RootDirectory=, plus sandboxing
options, via .service.d/ drop-ins

Result: bundled images, containing service code, made available
locally easily like native services

Containers without a Container Manager, with systemd



Outlook: portable service generator

Iterate through bundle images/dirs in /var/lib/portables,
extract relevant unit files, make them available on the host

Extend them with RootImage=/RootDirectory=, plus sandboxing
options, via .service.d/ drop-ins

Result: bundled images, containing service code, made available
locally easily like native services

Containers without a Container Manager, with systemd



Outlook: portable service generator

Iterate through bundle images/dirs in /var/lib/portables,
extract relevant unit files, make them available on the host

Extend them with RootImage=/RootDirectory=, plus sandboxing
options, via .service.d/ drop-ins

Result: bundled images, containing service code, made available
locally easily like native services

Containers without a Container Manager, with systemd



Outlook: portable service generator

Iterate through bundle images/dirs in /var/lib/portables,
extract relevant unit files, make them available on the host

Extend them with RootImage=/RootDirectory=, plus sandboxing
options, via .service.d/ drop-ins

Result: bundled images, containing service code, made available
locally easily like native services

Containers without a Container Manager, with systemd



Missing: pidns? hidepid?

systemctl purge?

Containers without a Container Manager, with systemd



Missing: pidns? hidepid?

systemctl purge?

Containers without a Container Manager, with systemd



Open for everybody

Use externally managed network namespace

Use externally managed eBPF programs

Use externally managed console TTY

Containers without a Container Manager, with systemd



Open for everybody

Use externally managed network namespace

Use externally managed eBPF programs

Use externally managed console TTY

Containers without a Container Manager, with systemd



Open for everybody

Use externally managed network namespace

Use externally managed eBPF programs

Use externally managed console TTY

Containers without a Container Manager, with systemd



Open for everybody

Use externally managed network namespace

Use externally managed eBPF programs

Use externally managed console TTY

Containers without a Container Manager, with systemd



That’s all, folks!

Containers without a Container Manager, with systemd


