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Containers?

. . . Resource Bundling, Sandboxing, Delivery

Let’s focus on the first two!
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Resource Bundling
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RootDirectory=

RootImage=
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Images for RootImage=?

Discoverable GPT, unambiguous GPT or MBR, raw file system

For example, create it with mkosi

dm-verity, LUKS, . . .
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RootImage=/RootDirectory=

Fancy chroot()

Inherits the same problems
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MountAPIVFS=
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How to share data?

BindPaths=, BindReadOnlyPaths=

RuntimeDirectory=, StateDirectory=, CacheDirectory=,
LogsDirectory, ConfigurationDirectory=

Also nice to keep bundles self-contained, no need for tmpfiles.d/
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How to share user table?

Not at all: use PrivateUsers=, to disconnect the tables

nss-systemd synthesizes user entries for both root and nobody,
the user IDs always needed, and always defined the same way.

Missing: how to make sure the host and the bundle environment
can share the service’s own user identity?
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Sandboxing
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Established way to sandbox UNIX services:

UNIX users

DynamicUser=

Also nice to keep bundles self-contained, no need for sysusers.d/

No artifacts

Containers without a Container Manager, with systemd



Established way to sandbox UNIX services: UNIX users

DynamicUser=

Also nice to keep bundles self-contained, no need for sysusers.d/

No artifacts

Containers without a Container Manager, with systemd



Established way to sandbox UNIX services: UNIX users

DynamicUser=

Also nice to keep bundles self-contained, no need for sysusers.d/

No artifacts

Containers without a Container Manager, with systemd



Established way to sandbox UNIX services: UNIX users

DynamicUser=

Also nice to keep bundles self-contained, no need for sysusers.d/

No artifacts

Containers without a Container Manager, with systemd



Established way to sandbox UNIX services: UNIX users

DynamicUser=

Also nice to keep bundles self-contained, no need for sysusers.d/

No artifacts

Containers without a Container Manager, with systemd



RemoveIPC=

PrivateTmp=

No artifacts
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PrivateDevices=

PrivateNetwork=

IPAddressAllow=/IPAddressDeny=
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ProtectKernelTunables=

ProtectKernelModules=

ProtectControlGroups=
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SystemCallFilter=

Now with system call groups!
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RestrictAddressFamilies=

SystemCallArchitectures=

RestrictNamespaces=

LockPersonality=

MemoryDenyWriteExecute=

RestrictRealtime=

KeyringMode=
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Outlook: portable service generator

Iterate through bundle images/dirs in /var/lib/portables,
extract relevant unit files, make them available on the host

Extend them with RootImage=/RootDirectory=, plus sandboxing
options, via .service.d/ drop-ins

Result: bundled images, containing service code, made available
locally easily like native services
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Missing: pidns? hidepid?

systemctl purge?
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Open for everybody

Use externally managed network namespace

Use externally managed eBPF programs

Use externally managed console TTY
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That’s all, folks!
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