
SoC Power Management Crash Course
Michael Turquette <mturquette@baylibre.com>



Who am I? And why am I here?
CEO of BayLibre, Inc

● Previously at Texas Instruments, Linaro, San Francisco start-up
● Contributor to various power management-related topics upstream

Author and co-maintainer of the common clk framework

● Merged in 3.4
● Maintenance since May, 2012



Presentation structure
This presentation moves quickly and covers a lot of ground

Interrupt me often! Call out if you disagree, have a question or feel lost



Presentation structure
This presentation moves quickly and covers a lot of ground

Interrupt me often! Call out if you disagree, have a question or feel lost

Most concepts are interchangeable between modern System-on-Chip 
processors

Terminology tends to lean towards the ARM embedded ecosystem, and 
less towards the Intel/ACPI view of the world



Presentation structure
This presentation moves quickly and covers a lot of ground

Interrupt me often! Call out if you disagree, have a question or feel lost

Most concepts are interchangeable between modern System-on-Chip 
processors

Terminology tends to lean towards the ARM embedded ecosystem, and 
less towards the Intel/ACPI view of the world

We’re flying at about 30,000 feet above sea level (10,000m)

There is a lot of simplification at this altitude



Part 1: PM fundamentals



Power management overview
● The goal of power management (PM) is to consume as 

little power as needed given the current system state, 
configuration or use case



Power management overview
● The goal of power management (PM) is to consume as 

little power as needed given the current system state, 
configuration or use case

● There are other related goals such as energy 
management, thermal management and current limiting



Why do we care?
● Battery life

● Data center costs

● Regulatory compliance

● Skin temperature

● Carbon footprint



P = IV

Physics overview



P = IV
Instantaneous electrical power is the product 
of instantaneous voltage and instantaneous 
current

Physics overview



P = IV
Instantaneous electrical power is the product 
of instantaneous voltage and instantaneous 
current

If either voltage is zero or current is zero then 
power is zero

Physics overview



P = IV
Instantaneous electrical power is the product 
of instantaneous voltage and instantaneous 
current

If either voltage is zero or current is zero then 
power is zero

Minimizing power for active use cases and 
idle use cases is desirable

Physics overview



P = IV
Instantaneous electrical power is the product 
of instantaneous voltage and instantaneous 
current

If either voltage is zero or current is zero then 
power is zero

Minimizing power for active use cases and 
idle use cases is desirable

Energy is the integration of power over time

Physics overview



Hardware overview
● Within a system-on-chip (SoC), we generally divide 

hardware modules into logic and memory



Hardware overview
● Within a system-on-chip (SoC), we generally divide 

hardware modules into logic and memory

● Modules can be in an active state or an idle state



Hardware overview
● Within a system-on-chip (SoC), we generally divide 

hardware modules into logic and memory

● Modules can be in an active state or an idle state

● There may be multiple active or running states 
(performance levels)



Hardware overview
● Within a system-on-chip (SoC), we generally divide 

hardware modules into logic and memory

● Modules can be in an active state or an idle state

● There may be multiple active or running states 
(performance levels)

● There may be multiple idle states (deep sleep)



Idle versus Active power savings
Idle

● Saves power when we 
are not doing work

● Critical sections in Linux 
device drivers

● Tradeoffs between 
wakeup latency and 
power reduction



Idle versus Active power savings
Idle

● Saves power when we 
are not doing work

● Critical sections in Linux 
device drivers

● Tradeoffs between 
wakeup latency and 
power reduction

Active

● Saves power while we 
are doing work

● Critical sections are less 
important

● Tradeoffs between 
performance and power 
reduction



Race-to-idle vs Taking-it-slow



Knobs that we control
Voltage Current



Knobs that we control
Voltage
● While running, a minimum 

voltage level is required to keep 
the hardware operating correctly

● Running at different performance 
levels allows us to scale voltage

● While idle, voltage may be 
lowered to a very low value while 
retaining state

Current



Knobs that we control
Voltage
● While running, a minimum 

voltage level is required to keep 
the hardware operating correctly

● Running at different performance 
levels allows us to scale voltage

● While idle, voltage may be 
lowered to a very low value while 
retaining state

Current
● Current is drawn by enabled 

resources such as clock lines, 
regulators, idle domains and 
PHYs

● Shutting off these resources 
when the corresponding devices 
are inactive (gating) decreases 
system-wide current draw



How do we control these knobs?
● Memory mapped register interfaces

○ PRCM, PRCMU, CAR, CRM and other IPs within SoC

● Firmware interfaces
○ ACPI, PSCI, SCPI, SCMI, TI-SCI, or stuff using rpmsg

● Communication with Power Management IC (PMIC)
○ I2c or SPI are common methods
○ PMBus or other wrappers also exist
○ GPIO or other line asserts

■ Often combined with WFI/WFE or idle instruction for CPU power management



Anyone still awake?



Putting it together
But first, a quick review!

● Try to optimize voltage and current, for both active and 
idle use cases

● Modern SoCs allow for fine-grained power management

● Controlling power resources is complicated

● Various policies and schemes for saving power



Putting it together: modules & IP blocks



Putting it together: idle domains



Example silicon: AM335x



Putting it together: performance domains



Example silicon: OMAP3



Part 2: Finally, the Linux stuff!



Idling devices in Linux, 1/4
Runtime PM + Generic PM Domains

The hardware will be in an active state after a device driver 
calls pm_runtime_get()

The hardware might acquiesce into an idle state after a 
device driver calls pm_runtime_put()

These form critical sections in the code where work is done



Idling devices in Linux, 2/4
Runtime PM + Generic PM Domains

genpd is the driver framework for controlling the power 
management hardware and resources

Idle domains and power domains in hardware can be 
modeled in this framework, and then client devices attach 
to these domains

genpd is the hardware-specific backend for the 
hardware-independent Runtime PM interface



Idling devices in Linux, 3/4
Runtime PM + Generic PM Domains

include/linux/pm_domain.h

Documentation/devicetree/bindings/power/power_domain.txt

include/linux/pm_runtime.h

Documentation/power/runtime_pm.txt



Idling devices in Linux, 4/4
Runtime PM + Generic PM Domains

http://elinux.org/images/0/08/ELC-2010-Hilman-Runtime-PM.pdf

http://elinux.org/images/1/18/Elc2011_damm.pdf

http://elinux.org/images/1/14/Last_One_Out,_Turn_Off_The_Ligh
ts.pdf



CPUidle
Scheduler has a dedicated idle thread

Idle thread calls into the CPUidle driver subsystem

CPUidle driver programs CPUs, clusters & packages into 
sleep states based on next estimate work

drivers/cpuidle/cpuidle.c

Documentation/cpuidle/*.txt



CPUidle vs Runtime PM & genpd, 1/2
We already have Runtime PM and genpd for managing 

hardware idle states

Why do something different for CPUs?

● Predates Runtime PM & genpd
● Written by CPU vendors, versus platform/SoC vendors



CPUidle vs Runtime PM & genpd, 2/2
Efforts are ongoing to unify these subsystems

https://linuxplumbersconf.org/2015/ocw/system/presentatio
ns/3075/original/One%20idle%20to%20rule%20them%20al
l.pdf



PM QoS, 1/2
How do we select the idle state?

Per-device PM Quality of Service!

Wake-up latency constraints limit idle state depth

Fast wake-up constraint means shallow idle state

Slow wake-up constraint (or not constraint at all) means 
deeper idle state



PM QoS, 2/2
include/linux/pm_qos.h

pm_qos_update_request(request, latency);

Affects the hardware idle state when pm_runtime_put() is 
called



System Suspend & Resume
How is it different from Runtime PM?

The “close your laptop lid” use case

Tells the scheduler to stop … scheduling

struct dev_pm_ops might be replaced with Runtime PM 
callbacks?



CPUfreq
Similar to CPUidle; controls CPU frequency/performance

Variety of governors or policies

Device Tree bindings have greatly simplified writing drivers 
for ARM platforms

drivers/cpufreq/*.c

include/linux/cpufreq.h



Devfreq
CPUfreq-like subsystem for managing device 

performance policy

Extremely similar codebase compared to CPUfreq

Uses governors as policies to select performance target

Best for DDR, memory busses and non-CPU processors 
such as GPUs, DSPs or other offload engines/accelerators



OPPs are frequency & voltage pairs

In fact, they are tuples of performance state information:

● Clock frequency
● Regulator voltage
● Performance “level”
● State-change sequencing

Used by CPUfreq and Devfreq

Operating Performance Points



Runtime PM for performance?
CPUfreq and Devfreq provide some performance 

management in Linux

Currently Linux does not have a generic performance 
power management solution that is similar to what 
Runtime PM & genpd do for idle power management

I’m interested in fixing this problem. Let me know if you are 
too!



Things we didn’t have time to talk about
● Process nodes

○ Static and dynamic leakage
○ Cold/nominal/hot bins, also called strong/nominal/weak bins

● Adaptive voltage scaling
○ Silicon aging & tin foil hats

● Instrumenting boards for power measurement
○ Shameless plug: buy ACME! http://baylibre.com/acme/

● Energy Aware Scheduling



Attribution
AM335x Technical Reference Manual (Rev. O)

● http://www.ti.com/lit/pdf/spruh73

OMAP4430 ES2.x Technical Reference Manual (Rev. AP)

● http://www.ti.com/lit/pdf/swpu231

linux-pm@vger.kernel.org mailing list



Questions?


